Extensions 1→N→G→Q→1 with N=C23 and Q=C2×C26

Direct product G=N×Q with N=C23 and Q=C2×C26
dρLabelID
C24×C26416C2^4xC26416,235

Semidirect products G=N:Q with N=C23 and Q=C2×C26
extensionφ:Q→Aut NdρLabelID
C231(C2×C26) = C13×C22≀C2φ: C2×C26/C13C22 ⊆ Aut C23104C2^3:1(C2xC26)416,181
C232(C2×C26) = C13×2+ 1+4φ: C2×C26/C13C22 ⊆ Aut C231044C2^3:2(C2xC26)416,231
C233(C2×C26) = D4×C2×C26φ: C2×C26/C26C2 ⊆ Aut C23208C2^3:3(C2xC26)416,228

Non-split extensions G=N.Q with N=C23 and Q=C2×C26
extensionφ:Q→Aut NdρLabelID
C23.1(C2×C26) = C13×C23⋊C4φ: C2×C26/C13C22 ⊆ Aut C231044C2^3.1(C2xC26)416,49
C23.2(C2×C26) = C13×C4.4D4φ: C2×C26/C13C22 ⊆ Aut C23208C2^3.2(C2xC26)416,185
C23.3(C2×C26) = C13×C422C2φ: C2×C26/C13C22 ⊆ Aut C23208C2^3.3(C2xC26)416,187
C23.4(C2×C26) = C13×C41D4φ: C2×C26/C13C22 ⊆ Aut C23208C2^3.4(C2xC26)416,188
C23.5(C2×C26) = C22⋊C4×C26φ: C2×C26/C26C2 ⊆ Aut C23208C2^3.5(C2xC26)416,176
C23.6(C2×C26) = C13×C42⋊C2φ: C2×C26/C26C2 ⊆ Aut C23208C2^3.6(C2xC26)416,178
C23.7(C2×C26) = D4×C52φ: C2×C26/C26C2 ⊆ Aut C23208C2^3.7(C2xC26)416,179
C23.8(C2×C26) = C13×C4⋊D4φ: C2×C26/C26C2 ⊆ Aut C23208C2^3.8(C2xC26)416,182
C23.9(C2×C26) = C13×C22⋊Q8φ: C2×C26/C26C2 ⊆ Aut C23208C2^3.9(C2xC26)416,183
C23.10(C2×C26) = C13×C22.D4φ: C2×C26/C26C2 ⊆ Aut C23208C2^3.10(C2xC26)416,184
C23.11(C2×C26) = C4○D4×C26φ: C2×C26/C26C2 ⊆ Aut C23208C2^3.11(C2xC26)416,230
C23.12(C2×C26) = C13×C2.C42central extension (φ=1)416C2^3.12(C2xC26)416,45
C23.13(C2×C26) = C4⋊C4×C26central extension (φ=1)416C2^3.13(C2xC26)416,177
C23.14(C2×C26) = Q8×C2×C26central extension (φ=1)416C2^3.14(C2xC26)416,229

׿
×
𝔽